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Abstract

We formulate tracking as an online decision-making pro-

cess, where a tracking agent must follow an object despite

ambiguous image frames and a limited computational bud-

get. Crucially, the agent must decide where to look in the

upcoming frames, when to reinitialize because it believes

the target has been lost, and when to update its appearance

model for the tracked object. Such decisions are typically

made heuristically. Instead, we propose to learn an optimal

decision-making policy by formulating tracking as a par-

tially observable decision-making process (POMDP). We

learn policies with deep reinforcement learning algorithms

that need supervision (a reward signal) only when the track

has gone awry. We demonstrate that sparse rewards al-

low us to quickly train on massive datasets, several orders

of magnitude more than past work. Interestingly, by treat-

ing the data source of Internet videos as unlimited streams,

we both learn and evaluate our trackers in a single, unified

computational stream.

1. Introduction

Object tracking is one of the basic computational build-

ing blocks of video analysis, relevant for tasks such as gen-

eral scene understanding and perception-for-robotics. A

particularly popular formalism is that of model-free track-

ing, where a tracker is provided with a bounding-box ini-

tialization of an unknown object. Much of the recent

state-of-the-art advances make heavy use of machine learn-

ing [23, 54, 40, 56, 20], often producing impressive results

by improving core components such as appearance descrip-

tors or motion modeling.

Challenges: We see two significant challenges that limit

further progress. First, the limited quantity of annotated

video data impedes both training and evaluation. While

image datasets involve millions of images for training and

testing, tracking datasets have hundreds of videos. Lack

of data seems to arise from the difficulty of annotating

Figure 1. Streaming interactive training: We propose an iterative

procedure for interactively training trackers from data. We down-

load a new video from the Internet and run the current tracker

on it, evaluate the tracker’s performance with interactive rewards,

and then retrain the tracker policy (with reinforcement learning)

with the reward signals. Importantly, rather than requiring interac-

tive labeling of bounding-boxes, we require only binary (incorrect

/ correct) feedback from human users. This scheme allows us to

train and evaluate our tracker on massive streaming datasets, 100X

larger than prior work (Table 1).

videos, as opposed to images. Second, as vision (re)-

integrates with robotics, video processing must be done in

an online, streaming fashion. This requires a tracker to

make on-the-fly decisions such as when to re-initialize it-

self [51, 16, 30, 47, 21] or update its appearance model (the

so-called template-update problem [54, 21]). Such deci-

sions are known to be crucial in terms of final performance,

but are typically hand-designed rather than learned.

Contribution 1 (interactive video processing): We

show that reinforcement learning (RL) can be used to ad-

dress both challenges in distinct ways. In terms of data,

rather than requiring videos to be labeled with detailed

bounding-boxes at each frame, we interactively train track-

ers with far more limited supervision (specifying binary re-

wards/penalties only when a tracker fails). This allows us

to train on massive video datasets that are 100× larger than



prior work. Interestingly, RL also naturally lends itself to

streaming “open-world” evaluation: when running a tracker

on a never-before-seen video, the video can be used for both

evaluation of the current tracker and for training (or refin-

ing) the tracker for future use (Fig. 1). This streaming evalu-

ation allows us to train and evaluate models in an integrated

fashion seamlessly. For completeness, we also evaluate our

learned models on standard tracking benchmarks.

Contribution 2 (tracking as decision-making): In

terms of tracking, we model the tracker itself as an active

agent that must make online decisions to maximize its re-

ward, which is (as above) the correctness of a track. De-

cisions ultimately specify where to devote finite computa-

tional resources at any point of time: should the agent pro-

cess only a limited region around the currently predicted

location (e.g.,“track”), or should it globally search over the

entire frame (“reinitialize”)? Should the agent use the pre-

dicted image region to update its appearance model for the

object being tracked (“update”), or should it be “ignored”?

Such decisions are notoriously complicated when image ev-

idence is ambiguous (due to say, partial occlusions): the

agent may continue tracking an object but perhaps decide

not to update its model of the object’s appearance. Rather

than defining these decisions heuristically, we will ulti-

mately use data-driven techniques to learn good policies for

active decision-making (Fig. 2).

Contribution 3 (deep POMDPs): We learn tracker de-

cision policies using reinforcement learning. Much re-

cent work in this space assumes a Markov Decision Pro-

cess (MDP), where the agent observes the true state of the

world [34, 56], which is the true (possibly 3D) location

and unoccluded appearance of the object being tracked. In

contrast, our tracker only assumes that it receives partial

image observations about the world state. The resulting

partially-observable MDP (POMDP) violates Markov inde-

pendence assumptions: actions depend on the entire his-

tory of observations rather than just the current one [19, 43].

As in [15, 22], we account for this partial observability by

maintaining a memory that captures beliefs about the world,

which we update over time (Sec. 3). In our case, beliefs

capture object location and appearance, and action policies

specify how and when to update those beliefs (e.g., how

and when should the tracker update its appearance model)

(Sec. 4). However, policy-learning is notoriously challeng-

ing because actions can have long-term effects on future

beliefs. To efficiently learn policies, we introduce frame-

based heuristics that provide strong clues as to the long-term

effects of taking a particular action (Sec. 5).

2. Related Work

Tracking datasets: Several established benchmarks ex-

ist for evaluating trackers [55, 23]. Interestingly, there is

evidence to suggest that many methods tend to overfit due

update
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update

ignore

update

ignore

Figure 2. Decisions in tracking: Trackers must decide when to

update their appearance and when to re-initialize. This example

enumerates the four possible outcomes of updating appearance (or

not) over two frames, where blue denotes a good track and red

denotes an error. Given a good track (left), it is important to update

appearance to track through challenging frames with occlusions

(center), but equally important to not update after an occlusion to

prevent drift (right). Though such decisions are typically made

heuristically, we recast tracking as a sequential decision-making

process, and learn a policy with reinforcement learning.

to aggressive tuning [40]. Withholding test data annota-

tion and providing an evaluation server addresses this to

some extent [26, 42]. Alternatively, we propose to eval-

uate on an open-world stream of Internet videos, making

over-fitting impossible by design. It is well-known that al-

gorithms trained on “closed-world” datasets (say, with cen-

tered objects against clean backgrounds [39, 4]) are difficult

to generalize to “in-the-wild” footage [48]. We invite the

reader to compare our videos in the supplementary material

to contemporary video benchmarks for tracking.

Interactive tracking: Several works have explored in-

teractive methods that use trackers to help annotate data.

The computer first proposes a track. Then a human cor-

rects major errors and retrains the tracker using the correc-

tions [8, 2, 50]. Our approach is closely inspired by such ac-

tive learning formalisms but differs in that we make use of

minimal supervision in the form of a binary reward (rather

than a bounding box annotation).

Learning-to-track: Many tracking benchmarks tend

to focus on short-term tracking (< 2000 frames per

video) [55, 23]. In this setting, a central issue appears to

be modeling the appearance of the target. Methods that

use deep features learned from large-scale training data

perform particularly well [51, 52, 29, 27, 36]. Our fo-

cus on tracking over longer time frames poses additional

challenges - namely, how to reinitialize after cuts, oc-

clusions and failures, despite changes in target appear-

ance [14, 54]. Several trackers address these challenges

with hand-designed policies for model updating and reini-



Dataset # Videos # Frames Annotations Type

OTB-2013 [55] 50 29,134 29,134 AABB

PTB [46] 50 21,551 21,551 AABB

VOT-2016 [23] 60 21,455 21,455 RBB

ALOV++ [44] 315 151,657 30,331 AABB

NUS-PRO [26] 365 135,310 135,310 AABB

Ours 16,384 10,895,762 108,957 Binary

Table 1. Our interactive learning formulation allows us to train

and evaluate on dramatically more videos than prior work. We

annotate binary rewards, while the other datasets provide Axis

Aligned (AABB) or Rotated (RBB) Bounding Boxes.

tialization - TLD [21], ALIAN [41] and SPL [47] explicitly

do so in the context of long-term tracking. On the other

hand, our method takes a data-driven approach and learns

policies for model-updating and reinitialization. Interest-

ingly, such an “end-to-end” learning philosophy is often

embraced by the multi-object tracking community, where

strategies for online reinitialization and data association are

learned from data [24, 56, 28]. Most related to us are [56],

who use an MDP for multi-object tracking, and [22], who

use RL for single target tracking. Both works use heuris-

tics to reduce policy learning to a supervised learning task,

avoiding the need to reason about rewards in the far fu-

ture. Our experimental results show that explicit Q-learning

outperforms such heuristics because it can learn to capture

long-term effects of taking particular actions.

Real-time tracking through attention: An interesting

(but perhaps unsurprising) phenomenon is that better track-

ers tend to be slower [23]. Indeed, on the VOT benchmark,

most recent trackers do not run in real time. Generally,

trackers that search locally [45, 49] run faster than those

that search globally [47, 30, 17]. To optimize recognition

efficiency, one can learn a policy to guide selective search

or attention. Inspired by recent work which finds a policy

for selective search using RL [20, 33, 38, 10, 18, 3, 31],

we also learn a policy that decides whether to track (i.e.,

search positions near the previous estimate) or reinitialize

(i.e., search globally over the entire image). But in contrast

to prior work, we additionally learn a policy to decide when

to update a tracker’s appearance model. To ensure that our

tracker operates with a fixed computational budget, we im-

plement reinitialization by searching over a random subset

of positions (equal in number to those examined by track).

3. POMDP Tracking

We now describe our POMDP tracker, using standard no-

tation where possible [43]. For our purposes, a POMDP is

defined by a tuple of states (Ω, O,A,B): At each frame i,

the world state ωi ∈ Ω generates a noisy observation oi ∈ O

that is mapped by an agent into an action ai ∈ A, which in

turn generates a reward.

In our case, the state ωi captures the true location and

Figure 3. Tracker architecture: At each frame i, our tracker

updates a location heatmap hi for the target using the current im-

age observation oi, a location prior given by the previous frames’

heatmap hi−1, and the previous appearance model θi−1. Cru-

cially, our tracker learns a policy for actions ai that optimally up-

date hi and θi (2).

appearance of the object being tracked in frame i. To help

build intuition, one can think of the location as 2D pixel co-

ordinates and appearance as a 2D visual template. Instead

of directly observing this world state, the tracking agent

maintains a belief over world states, written as

bi = (θi, hi), where θi ∈ Rh×w×f , hi ∈ RH×W

where θi is a distribution over appearances (we use a point-

mass distribution encoded by a single h×w filter defined on

f convolutional features), and hi is a distribution over pixel

positions (encoded as a spatial heatmap of size H × W ).

Given the previous belief bi−1 and current observed video

frame oi, the tracking agent updates its beliefs about the

current frame bi. Crucially, tracker actions ai specify how

to update beliefs, that is, whether to update the appearance

model and whether to reinitialize by disregarding previous

heatmaps. From this perspective, our POMDP tracker is a

memory-based agent that learns a policy for when and how

to update its own memory (Fig. 3).

Specifically, beliefs are updated as follows:

hi =

{

TRACK(hi−1, θi−1, oi) if a
(1)
i = 1

REINIT (θi−1, oi) otherwise
(1)

θi =

{

UPDATE(θi−1, hi, oi) if a
(2)
i = 1

θi−1 otherwise

where ai = (a
(1)
i , a

(2)
i ). Object heatmaps hi are updated

by running the current appearance model θi−1 on image re-

gions oi near the target location previously predicted us-

ing hi−1 (“tracking”). Alternatively, if the agent believes

it has lost track, it may globally evaluate its appearance

model (“reinit”). The appearance model is then “updated”

with the currently-predicted image region or possibly un-

changed. In our framework, the tracking, reinitialization,

and appearance-update modules can be treated as black-



boxes given the above functional form.We will discuss par-

ticular implementations shortly (with copious details in the

supplementary material), but first, we focus on the heart of

our RL approach: a principled framework for learning to

take appropriate actions. To do so, we begin by reviewing

standard approaches for decision-making.

Online heuristics: The simplest approach to picking ac-

tions might be to pre-define heuristics functions which esti-

mate the correct action. For example, many trackers reini-

tialize whenever the maximum confidence of the heatmap is

below a threshold. Let us summarize the information avail-

able to the tracker at frame i as a “state” si, which includes

the previous belief bi−1 (the previous heatmap and appear-

ance model) and current image observation oi.

a∗i = Heuron(si), where si = (bi−1, oi) (2)

Offline heuristics: A generalization of the above is to

use offline training data to build better heuristics. Crucially,

one can now make use of ground-truth training annotations

as well as future frames to better gauge the impact of possi-

ble actions. We can write this knowledge as the true world

state {ωi, ∀i}. For example, a natural heuristic may be to

reinitialize whenever the predicted object location does not

overlap the ground-truth position for that frame. Similarly,

one may update appearance whenever doing so improves

the confidence of ground-truth object locations across fu-

ture frames:

a∗i = Heuroff (si, {ωi : ∀i}) (3)

Crucially, these heuristics cannot be applied at test time be-

cause ground truth is not known! However, they can gen-

erate per-frame target action labels a∗i on training data, ef-

fectively reducing policy learning to a supervised-learning

problem. Though offline heuristics appear to be a simple

and intuitive approach to policy learning, we have not seen

them widely used for learning tracker action policies.

Q-functions: Offline heuristics can be improved by un-

rolling them forward in time: the benefit of a putative action

can be better modeled by applying that action, processing

the next frame, and using the heuristic to score the “good-

ness” of possible actions in that next frame. This intuition is

formalized through the well-known Bellman equations that

recursively define Q-functions to return a goodness score

(the expected future reward) for each putative action a:

Q(si, ai) = R(si) + γmax
ai+1

Q(si+1, ai+1), (4)

where si includes both the tracker belief state and image

observation, and R(si) is the reward associated with the re-

porting the estimated object heatmap hi. We let R(si) = 1
for a correct prediction and 0 otherwise. Finally, γ ∈ [0, 1]

is a discount factor that trades off immediate vs future per-

frame rewards. Given a tracker state and image observa-

tion si, the optimal action is readily computed from the Q-

function:

a∗ = argmax
a

Q(si, a)

Q-learning: Traditionally, Q-functions are iteratively

learned with Q-learning [43]:

Q(si, ai)⇐Q(si, ai) + . . . (5)

α
(

R(si) + γmax
ai+1

Q(si+1, ai+1)−Q(si, ai)
)

where α is a learning rate. To handle continuous belief

states, we approximate the Q-function with a CNNs:

Q(si, ai) ≈ CNN(si, ai)

that processes states si and binary actions ai to return a

scalar value capturing the expected future reward for tak-

ing that action. Recall that a state si encodes a heatmap and

an appearance model from previous frames and an image

observation from the current frame.

4. Interactive Training and Evaluation

In this section, we describe our procedure for interac-

tively learning CNN parameters w (that encode tracker ac-

tion policies) from streaming video datasets. To do so, we

gradually build up a database of experience replay memo-

ries [1, 34], which are a collection of state-action-reward-

nextstate tuples D = {(si, ai, ri, si+1)}:

L(w,D) =
(

ri +max
ai+1

Qw(si+1, ai+1)−Qw(si, ai)
)2

(6)

Gradient descent on the above objective is performed as fol-

lows: given a training sample (si, ai, ri, si+1), first perform

a forward pass to compute the current estimate Qw(si, ai)
and the target: ri + maxai+1

Qw(si+1, ai+1). Then back-

prop through the weights w to reduce L(w).
The complete training algorithm is written in Alg. 1.

We choose random videos from the Internet by sampling

phrases using WordNet [32]. Given the sampled phrase

and video, an annotator provides an initialization bounding

box and begins running the existing tracker. After tracking,

the annotator marks those frames (in strides of 50) where

the tracker was incorrect using a standard 50% intersection-

over-union threshold. Such binary annotation (“correct” or

“failed”) requires far less time per frame than bounding-box

annotation: we design a real-time interface that simply re-

quires a user to depress a button during tracker failures. By

playing back videos at a (user-selected) sped-up frame rate,

users annotate 1200 frames per minute on average (versus

34 for bounding boxes). Annotating our entire dataset of 10



1 while True do

2 Download random video;

3 θ1 ← UPDATE(h1, o1); /* manually init. */

4 forall i ∈ video do

5 si = ((θi−1, hi−1), oi);
/* track or reinitialize? */

6 if Qw(si, t) > Qw(si, r) then

7 hi ← TRACK(hi−1, θi−1, oi); a
(1)
i ← 1;

8 else hi ← REINIT(θi−1, oi); a
(1)
i ← 0 ;

/* update or ignore? */

9 if Qw(si,m) > Qw(si, i) then

10 θi ← UPDATE(θi−1, hi, oi); a
(2)
i ← 1;

11 else θi ← θi−1 ;a
(2)
i ← 0 ;

/* manually evaluate the performance */

12 ri ← annotated frame correct? ;

/* update experience database */

13 D←D ∪ (si, ai, ri, si+1)

14 w ← argminL(w;D)
Algorithm 1: Our final learning algorithm interactively

labels a streaming dataset of videos while learning a

tracker action policy Qw. Given a video, steps 5 through

11 run a tracker according to the current policy. An an-

notator then assesses the binary reward ri (correctness)

for the highest-scoring bounding box extracted from the

heatmap hi by using an intersection-over-union thresh-

old. Annotated frames (and their associated state-action-

reward tuples) are added to our experience replay database

D. We then sample a minibatch of replay memories and

update the action policy w with backprop (Eq. 6).

million frames (Table 1) requires a little under two-days of

labor, versus the months required for equivalent bounding-

box annotation. After running our tracker and interactively

marking failures, we use the annotation as a reward signal

to update the policy parameters for the next video. Thus

each video is used to both evaluate the current tracker and

train it for future videos.

5. Implementation

TRACK/REINIT: Our TRACK function (Eq. 2) takes

as input the previous heatmap hi−1, appearance model θi−1,

image observation oi, and produces a new heatmap for the

current frame. We make use of the state-of-the-art fully-

convolutional tracker FCNT [51] and refer to the reader to

that work for precise implementation details, but summa-

rize them here: TRACK crops the current image oi to a

region of interest (ROI) around the most-likely object loca-

tion from the previous frame (the argmax of hi−1). This

ROI is resized to a canonical image size (e.g., 224 × 224)

and processed with a CNN (VGG16) to produce a convo-

lutional feature map. The object appearance model θi−1

Figure 4. Q-CNNs: A Q-function predicts a score (the expected

future reward) as a function of (1) the localization heatmap and (2)

an action encoded using a one-hot encoding.

is represented as a filter on this feature map, allowing one

to compute a new heatmap with a convolution. When the

tracker believes it has lost track, the REINIT model simply

processes a random ROI.

UPDATE: We update the current filter θ using positive

and negative patches extracted from the current frame i.

We extract a positive patch from the maximal location in

the reported heatmap hi, and extract negative patches from

adjacent regions with less than 30% overlap. We update

θ following the default scheme in the underlying tracker:

for FCNT, θ is a two-layer convolutional template that is

updated with a fixed number of gradient descent iterations

(10). For CCOT, θ is a multi-resolution set of convolutional

templates that is fit through conjugate gradients.

Q-function CNN: Recall that our Q-functions process

a tracker state si = ((hi−1, θi−1), oi) and a candidate ac-

tion ai, to return a scalar representing the expected future

reward of taking that action (Fig. 4 and Eq. 6). In practice,

we define two separate Q-functions for our two binary de-

cisions (TRACK/REINIT and UPDATE/IGNORE). To plug

into standard learning approaches, we formally define a sin-

gle Q function as the sum of the two functions, implying

that the optimal decisions can be computed independently

for each. We found it sufficed to condition on the heatmap

hi−1 and implemented each function as a CNN, where the

first two hidden layers are shared across the two functions.

Each shared hidden layer consists of 16 × 16 × 4 convolu-

tion followed by ReLU and 4 × 4 max pooling. For each

decision, an independent fully-connected layer ultimately

predicts the expected future reward. When training the Q-

function using experience-replay, we use γ = .95, a learn-

ing rate of 1e-4, a momentum of .9 and 1e-8 weight decay.

Offline heuristics: Deep Q-learning is known to be un-

stable, and we found good initialization was important for

reliable convergence. We initialize the Q-functions in Eq. 6

(which specify the goodness of particular actions) with the

offline heuristics from Eq. 3. Specifically, the heuristic ac-

tion a∗i has a goodness of 1 (scaled by future discount re-

wards), while other actions have a goodness of 0:

Qinit(si, ai)⇐ I[ai = a∗i ]
∑

j≥i

γj−i (7)

where I denotes the identity function. In practice, we

found it useful to minimize a weighted average of the true



Online Tracking Benchmark [55]

Figure 5. OTB-2013: Our p-tracker (solid line) compared to FCNT [51], MUSTer [16], LTCT [30], TLD [21] and SPL [47] (dashed lines).

In general, many videos are easy for modern trackers, implying that a method’s rank is determined by a few challenging videos (such as the

confetti celebration and fireworks on the bottom left). Our tracker learns an UPDATE and REINIT policy that does well on such videos.
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Figure 6. Internet videos contain new challenges, such as cuts,

strange and interesting behaviors, fast motion and complex illumi-

nation. We show select results for our p-tracker plus FCNT [51],

MUSTer [16], LTCT [30], TLD [21] and SPL [47].

loss in Eq. 6 and a supervised loss (Qw − Qinit)
2, an ap-

proach related to heuristically-guided Q-learning [20, 7].

Defining a heuristic for TRACK vs REINIT is straight-

forward: a∗i should TRACK whenever the peak of the re-

ported heatmap overlaps the ground-truth object on frame

i. Defining a heuristic for UPDATE vs IGNORE is more

subtle. Intuitively, a∗i should UPDATE appearance with

frame i whenever doing so improves the confidence of fu-

ture ground-truth object locations in that video. To opera-

tionalize this, we update the current appearance model θi
on samples from frame i and compute ∆+, the number

of future frames where the updated appearance increases

confidence of ground-truth locations (and similarly ∆−, the

number of frames where the update decreases confidence of

track errors). We set a∗i to update when ∆+ +∆− > .5N ,

where N is the total number of future frames.
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Figure 7. OTB-2013 [55] results: Our learned policy tracker

(p-track) performs competitively on standard short-term tracking

benchmarks. We find that a policy learned for long-term track-

ing (p-track-long) tends to select the IGNORE action more often

(appropriate during occlusions, which tend be more common in

long videos). Learning a policy from short-term videos signif-

icantly improves performance, producing state-of-the-art results:

compare our p-track-short vs OOT-PS [17], TLD [21], FCNT [51],

MUSTer [16], LTCT [30], and SPL [47]
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� CCOT [12] � TCNN [35]

� SSAT [37] � MLDF [53]

� Staple [5] � DDC [23]

� EBT [57] � SRBT [23]

� STAPLEp [5] • DNT [9]

• SSKCF [25] • SiamRN [6]

• DeepSRDCF [11] • SHCT [13]

Figure 8. VOT-2016 [23] results: Our learned policy tracker (p-

track-short) is as accurate as the state-of-the-art but is considerably

more robust. Robustness is measured by a ranking of trackers ac-

cording to the number of times they fail, while accuracy is the

rank of a tracker according to its average overlap with the ground

truth. Notably, p-track significantly outperforms FCNT [51] and

CCOT [12] in terms of robustness, even though its TRACK and

UPDATE modules follow directly from those works.

6. Experiments

Evaluation metrics: Following established protocols

for long-term tracking [21, 47], we evaluate F1 = 2pr
p+r

,

where precision (p) is the fraction of predicted locations

that are correct and recall (r) is the fraction of ground-
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Figure 9. Vs state-of-the-art: Our learned policy (p-track) per-

forms better than state-of-the-art baselines [51, 16, 30, 21, 47] on

a held-out test set. See Sec. 6.1 for discussion.

truth locations that are correctly predicted. Because Inter-

net videos vary widely in difficulty, we supplement averages

with boxplots to better visualize performance skew. When

evaluating results on standard benchmarks, we use the de-

fault evaluation criteria for that benchmark.

6.1. Comparative Evaluation

Short-term benchmarks: While our focus is long-

term tracking, we begin by presenting results on existing

benchmarks that tend to focus on the short-term setting –

the Online Tracker Benchmark (OTB-2013) [55] and Vi-

sual Object Tracking Benchmark (VOT-2016) [23]. Our

policy tracker (p-track-long), trained on Internet videos,

performs competitively (Fig. 7), but tends to over-predict

occlusions (which rarely occur in short-term videos). But

fortunately, we can learn a dedicated policy for short-term

tracking (p-track-short) by applying reinforcement learning

(Alg. 1) on short-term training videos. For each test video

in OTB-2013, we learn a policy using the 40 most dissimilar

videos in VOT-2016 (and vice-versa). We define similarity

between videos to be the correlation between the average

(ground-truth) object image in RGB space. This ensures

that, for example, we do not train using Tiger1 when test-

ing on Tiger2. Even under this controlled scenario, p-track-

short significantly outperforms prior work on both OTB-

2013 (Figs. 5 and 7) and VOT-2016 (Fig. 8).

Long-term baselines: For the long-term setting, we

compare to two classic long-term trackers: TLD [21] and

SPL [47]. Additionally, we also compare against short-

term trackers with public code that we were able to adapt:

FCNT [51], MUSTer [16], and LTCT [30]. Notably, all

these baselines use hand-designed heuristics for deciding

when to appearance update and reinitialize.

Long-term videos: Qualitatively speaking, long term

videos from the internet are much more difficult than stan-

dard benchmarks (c.f . Fig 5 and Fig. 6). First, many stan-

dard benchmarks tend to contain videos that are easy for

most modern tracking approaches, implying that a method’s

rank is largely determined by performance on a small num-

ber of challenging videos. The easy videos focus on

iconic [39, 4] views with slow motion and stable light-

Figure 10. System diagnostics: Beginning with the initial policy

of FCNT [51], we evolve towards our final data-driven policy ob-

jective. As shown, each component of our objective measurably

improves performance on the hold-out test-data. See Sec. 6.2 for

discussion.

ing conditions [26], featuring no cuts or long-term occlu-

sions [14]. Internet videos are significantly more complex.

One major reason is the presence of frequent cuts. We think

that Internet videos with multiple cuts provide a valuable

proxy for occlusions, particularly since they are a scalable

data source. In theory, long-term trackers must be able to re-

detect the target after an occlusion (or cut), but there is still

much room for improvement. Also, many strange things

happen in the wild world of Internet videos. For exam-

ple, in Transform the car transforms into a robot, confusing

all trackers (including ours). In SnowTank the tracker must

contend with many distractors (tanks of different colors and

type) and widely varying viewpoint and scale. Meanwhile,

JohnWick contains poor illumination, fast motion, and nu-

merous distractors.

Long-term results: To evaluate results for “in-the-

wild” long-term tracking, we define a new 16-video held-

out test set of long-term Internet videos that is never used

for training. Each of our test videos contains at least 5,000

frames, a common definition of “long-term” [47, 30, 16,

14]. We compare our method to various baselines in Fig. 9.

Comparisons to FCNT [51] and CCOT [12] are particu-

larly interesting since we can make use of their TRACK

and UPDATE modules. While FCNT performs quite well

in the short-term (Fig. 7), it performs poorly on long-term

sequences (Fig. 9). However, by learning a policy for updat-

ing and reinitialization, we produce a state-of-the-art long-

term tracker. We visualize the learned policy in Fig. 12.

6.2. System Diagnostics

We now provide a diagnostic analysis of various compo-

nents of our system. We begin by examining several alter-

native strategies for making sequential decisions (Fig. 10).

Online vs offline heuristics: We begin by analyzing

the online heuristic actions of our baseline tracker, FCNT.

FCNT updates an appearance model when the predicted

heatmap location is above a threshold, and always tracks

without reinitialization. This produces a F1 score of .09.

Next, we use offline heuristics to learn the best action to



0,000 4,000 8,000 12,000 16,000

Number of Videos

0

0.5

1

F
1-

m
ea

su
re

0.09 0.14 0.26 0.29 0.30

Figure 11. Our p-tracker’s performance increases as it learns

its policy using additional Internet videos. Above, we plot the dis-

tribution of F1 scores on our hold-out test data, at various stages

of training. At initialization, the average F1 score was 0.08. After

seeing 16,000 videos, it achieves an average F1 score of 0.30. Our

results suggest that large-scale training, made possible through in-

teractive annotation, is crucial for learning good decision policies.

take. These correspond to tracking when the predicted

object location is correct, and updating if the appearance

model trained on the new patch produces higher scores for

ground-truth locations. We train a classifier to predict these

actions using the current heatmap. When this offline trained

classifier is run at test-time, F1 improves to .13 with the

track heuristic and .14 with the update heuristic, and .20 if

both are used.

FCNT vs CCOT: We use FCNT for our ablative analy-

sis; initializing p-track using CCOT’s more complex online

heuristics proved difficult. However our final system uses

only our proposed offline heuristics, so we can nonethe-

less train it using CCOT’s TRACK, REINIT, and UPDATE

functions. In Fig. 9 we compare the final p-trackers built

using FCNT’s functions against those built using CCOT’s

functions. As consistent with prior work, we find that

CCOT improves overall performance (from .30 to .36).

Q-learning: Finally, we use Q-learning to refine our

heuristics (Eq. 6), noticeably improving the F1 score to .30.

Learning the appearance update action seems to have the

most significant effect on performance, producing an F1

score of .28 by itself. During partial occlusions, the tracker

learns to delicately balance between appearance update and

drift while accepting a few failures to avoid the cost and

risk of reinitialization. Overall, the learned policy dramati-

cally outperforms the default online heuristics, tripling the

F1 score from 9% to 30%!

Training iterations: In theory, our tracker can be inter-

actively trained on a never-ending stream. However, in our

experiments, Q-learning appeared to converge after seeing

between 8,000 and 12,000 videos. Thus, we choose to stop

training after seeing 16,000 videos. In Fig. 11, we plot per-

formance vs training iteration.

Computation: As mentioned previously, compara-

tively slower trackers typically perform better [23]. On a

Tesla K40 GPU, our tracker runs at approximately 10 fps.

While computationally similar to [51], we add the ability

to recover from tracking failures by reinitializing through

(a) Track & Update (b) Track Only (c) Track Only (d) Reinit

Ground Truth Tracker’s Localization

Figure 12. What does p-track learn? We show the actions taken

by our tracker given four heatmaps. P-track learns to track and up-

date appearance even in cluttered heatmaps with multiple modes

(a). However, if the confidence of other modes becomes high, p-

track learns not to update appearance to avoid drift due to distrac-

tors (b). If the target mode is heavily blurred, implying the target

is difficult to localize (because of a transforming robot), p-track

also avoids model update (c). Finally, the lack of mode suggests

p-track will reinitialize (d).

detection. To do so, we learn an attention policy that ef-

ficiently balances tracking vs reinitialization. Tracking is

fast because only a small region of interest (ROI) need be

searched. Rather than searching over the whole image dur-

ing reinitialization, we select a random ROI (which ensures

that our trackers operate at a fixed frame rate). In practice,

we find that target is typically found in ≈ 15 frames.

Conclusions: We formulate tracking as a sequential

decision-making problem, where a tracker must update its

beliefs about the target, given noisy observations and a

limited computational budget. While such decisions are

typically made heuristically, we bring to bear tools from

POMDPs and reinforcement learning to learn decision-

making strategies in a data-driven way. Our framework al-

lows trackers to learn action policies appropriate for differ-

ent scenarios, including short-term and long-term tracking.

One practical observation is that offline heuristics are an

effective and efficient way to learn tracking policies, both

by themselves and as a regularizer for Q-learning. Finally,

we demonstrate that reinforcement learning can be used

to leverage massive training datasets, which will likely be

needed for further progress in data-driven tracking.
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